

3α -(4-Substituted Phenyl)nortropane- 2β -carboxylic Acid Methyl Esters Show Selective Binding at the Norepinephrine Transporter

Bruce E. Blough,^a Christopher R. Holmquist,^a Philip Abraham,^a Michael J. Kuhar^b and F. Ivy Carroll^{a,*}

^aChemistry and Life Sciences, Research Triangle Institute, PO Box 12194, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA

^bNeuroscience Branch, National Institute on Drug Abuse Addiction Research Center, PO Box 5180, Baltimore, MD 21224, USA

Received 8 June 2000; accepted 17 August 2000

Abstract—A series of 3α -(4-substituted)nortropane-2β-carboxylic acid methyl esters was synthesized and evaluated for the ability to inhibit radioligand binding at the dopamine, serotonin, and norepinephrine transporters. 3α -(4-Methylphenyl)nortropane-2β-carboxylic acid methyl ester (**4c**) was found to be selective and highly potent for the norepinephrine transporter (NET) relative to the dopamine and serotonin transporters. © 2000 Elsevier Science Ltd. All rights reserved.

The pharmacology of cocaine (1) is believed to center around its interaction with the dopamine, serotonin, and norepinephrine transporters (DAT, 5-HTT, and NET, respectively). As part of a program to study the biochemical mechanism of action of cocaine, we have conducted a structure–activity relationship (SAR) study to investigate the monoamine transporter binding properties of the 3-phenyltropane class of compounds.¹ These studies have led to the discovery of analogues selective for the DAT such as 3β-(4-chlorophenyl)-2β-(3-phenylisoxazol-5'-yl)tropane (2, RTI-177)^{2,3} as well as analogues selective for the 5-HTT such as 3β-(4ethyl-3-iodophenyl)nortropane-2β-carboxylic acid methyl ester (3, RTI-353, EINT) (Chart 1).^{4,5} As a continuation of these SAR studies, we now report the synthesis of the 3α-(4-substituted phenyl)nortropane-2β-carboxylic acid methyl esters (4a-c), some of which possess greater affinity at the NET than that at the DAT and 5-HTT.

Chemistry

The 3α -(4'-fluoro, -chloro, and -methylphenyl)nortropane-2 β -carboxylic acid methyl esters (4a–c, respectively) were synthesized by refluxing the known 3α -(4'-substituted phenyl)tropane- 2β -carboxylic acid methyl esters (5a–c)⁶ with α -chloroethyl chloroformate (ACE-Cl) in dichloroethane under a nitrogen atmosphere to give an (α-chloroethyl)urethane, which was not isolated but converted directly to the *N*-nor analogues by solvolysis with methanol (Scheme 1).⁷ Concentration of the reaction mixture followed by the addition of ethyl ether provided **4a**–**c** as their hydrochloride salts. Each compound gave satisfactory elemental analyses for carbon, hydrogen, and nitrogen, and the ¹H NMR spectra were in

2 (RTI-177)

Chart 1.

^{*}Corresponding author. Tel.: +1-919-541-6679; fax: +1-919-541-8868; e-mail: fic@rti.org

CH₃,
$$CO_2CH_3$$

$$X$$
ACE-CI, DCE, reflux;
$$CH_3OH, reflux$$

$$X$$

$$ACE-CI, DCE, reflux;$$

$$CH_3OH, reflux$$

$$X$$

$$Aa, X = F$$

$$b, X = CI$$

$$c, X = CH_3$$

$$CO_2CH_3$$

$$X$$

CH₃ N ACE-Cl, DCE, reflux; CO₂CH₃ ACE-Cl, DCE, reflux; CO₂CH₃
$$X$$

6a, $X = F$
b, $X = Cl$
c, $X = CH_3$

ACE-Cl, DCE, reflux; CO₂CH₃

7a, $X = F$
b, $X = Cl$
c, $X = CH_3$

Scheme 1.

agreement with the assigned structures. The 2β , 3β -phenyltropanes, **6a–c**, and 2β , 3β -phenylnortropanes, **7a–c**, were prepared as previously described. Depiction of the 2β , 3α isomers as boats and 2β , 3β isomers as chairs is intentional. Previous NMR analysis suggests that the ring of the 2β , 3β compounds inverts when the center is epimerized to the 2β , 3α isomers.

Biological Studies

The in vitro binding affinities of the compounds at the DAT, 5-HTT, and NET were determined via competitive binding assays using the previously reported procedures. The radioligands were 0.5 nM [3 H]WIN 35,428 for the DAT, 0.2 nM [3 H]paroxetine for the 5-HTT, and 0.5 nM [3 H]nisoxetine for the NET. The binding data for the 2 β ,3 α -phenylnortropane analogues, 4a-c, along with previously reported data of the 2 β ,3 β -phenyltropane (6a-c), 2 β ,3 β -phenylnortropane (7a-c), and 2 β ,3 α -phenyltropane (5a-c) analogues as well as cocaine (1) for comparison are given in Table 1.

Results and Discussion

A SAR study of the 3β-(4'-substituted phenyl)nortropane-2β-carboxylic acid methyl esters revealed that removing the *N*-methyl group from the tropane analogue resulted in increased binding at NET and 5-HTT with little change in binding at the DAT.^{4,7} This can be seen by comparing the affinity of the 3-phenyltropane analogues, **6a**-**c**, to the nortropane analogues, **7a**-**c** (Table 1), respectively. In all three cases, binding at the DAT remained relatively constant while binding to the

 $\textbf{Table 1.} \quad \text{Comparison of transporter binding properties of 3-phenyltropane and 3-phenylnortropane } 2\beta\text{-carboxylic acid methyl ester analogues}$

R. N.
$$CO_2CH_3$$
 $2\beta,3\alpha$ -isomer

RTI compound ^b	Isomer				IC_{50} nM $(K_i$ nM) ^a		
	2	3	R	X	NE [³ H]nisoxetine	DA [³ H]WIN 35,428	5-HT [³ H]paroxetine
WIN 35, 428 (6a) ^c	β	β	CH ₃	F	835±45 (503±27)	15.7±1.4	760±47 (69±4)
142 (7a) ^c	β	β	Н	F	18.80 ± 0.68 (11.3±0.41)	4.4±0.2	68.6 ± 2.0 (6.24 ± 0.18)
286 (5a) ^d	β	α	CH_3	F	1200 ± 91 (741±54.8)	21.0 ± 0.50	5060±485 (460±44)
367 (4a)	β	α	Н	F	9.8 ± 0.7 (5.9 ± 0.40)	32.6±2.6	92.4 ± 7.7 (8.40 ± 0.70)
31 (6b) ^c	β	β	CH_3	Cl	37 ± 2.1 (22.0±1.3)	1.12±0.10	45.0 ± 1.3 (4.00 ± 0.12)
110 (7b) ^c	β	β	Н	Cl	5.45 ± 0.21 (3.28±0.13)	$0.62 {\pm} 0.09$	4.13 ± 0.62 (0.38±0.06)
355 (5b) ^d	β	α	CH_3	Cl	60 ± 2.40 (36.0±1.5)	2.4±0.2	998±120 (91±11)
389 (4b)	β	α	Н	Cl	5.14 ± 1.08 (3.1±0.60)	3.1±1.0	53 ± 3 (4.80±0.26)
32 (6c) ^d	β	β	CH_3	CH_3	60.0 ± 0.50 (36.0±0.30)	1.70 ± 0.30	240 ± 27 (22.0±2.5)
404 (7c)	β	β	Н	CH_3	7.20 ± 0.45 (4.40±0.27)	$0.84{\pm}0.09$	135±28 (12±3)
356 (5c) ^d	β	α	CH_3	CH_3	270 ± 24 (160±14)	$10.2 {\pm} 0.8$	4250 ± 422 (390±38)
362 (4c)	β	α	Н	CH_3	9.0 ± 0.3 (5.20±0.18)	33.6±4.1	500±30 (46±3)
Cocaine (1)	_	_	_	_	3300 ± 290 (1900±170)	89.1±4.8	1050 ± 89 (95±8)

^aThe numbers under the IC₅₀ value in parentheses are the $K_{\rm I}$ values.

^bCompounds **4a-c**, **5a** and **6a-c** and **5b-c** were assayed as their hydrochloride, tartrate, and tosylate salts, respectively. Compounds **7a-c** were assayed as free bases.

^cThe IC₅₀ values are from ref 7.

^dThe IC₅₀ values are from ref 6.

NET increased 44-, 6.8-, and 8.3-fold, and binding to the 5-HTT increased 11-, 11-, and 2-fold for the 4'-fluoro, 4'-chloro, and 4'-methyl analogues, respectively. In a separate SAR study we reported that 3α -(4'-substituted phenyl)tropane- 2β -carboxylic acid methyl esters showed decreased binding at all three transporters relative to the corresponding 2β , 3β -isomer; however, binding at the NET was sometimes affected less than the other two transporters. This trend is evidenced when comparing compounds 6a-c to 5a-c (Table 1). The data shows that epimerization at the 3-position caused binding to the NET to decrease only 1.4- to 4.5-fold, but binding to the DAT and 5-HTT became worse.

Since previous binding studies have shown that trends of the WIN 35,065-2 analogues are often additive, combining these two trends would suggest that 3α -(substituted phenyl)nortropane-2β-carboxylic acid methyl esters might be more potent and selective for the NET than at the DAT and 5-HTT. As expected, 3α -(4'-fluoro, -chloro, and -methylphenyl)nortropane-2β-carboxylic acid methyl esters, 4a-c, were found to have the highest potency for NET. A comparison of the affinity at the NET of the 2β , 3α -phenylnortropane analogues to that of the 2β , 3β phenylnortropanes reveals that they have approximately the same affinities. For example, 3β -(4'-chlorophenyl) nortropane-2β-carboxylic acid methyl ester 7b was found to bind with a K_i value of 3.3 nM, while its 2β , 3α nortropane isomer 4b possesses a K_i value of 3.1 nM. The NET K_i values for the 4'-methyl analogues, 7c and 4c, were 4.4 and 5.2 nM, respectively. The fluoro analogue 4a was the only analogue to show an increase in potency, roughly 2-fold over its epimer. The 4-methylphenyl analogue 4c was found to bind to the NET 7 and 9 times better than at the DAT and the 5-HTT, respectively. To our knowledge, **4c** is the first 3-phenyltropane analogue to show selectivity for the NET and, thus, represents a lead structure for the development of even more NET-selective analogues. The 4-fluorophenyl analogue 4a shows approximately equal affinity for the NET and 5-HTT with 6-fold selectivity relative to the DAT. The 4-chlorophenyl analogue 4b showed about equal affinity for all three transporters.

In summary, we have compared the monoamine transporter binding properties of the 2β , 3β - and 2β , 3α -isomers of 3-(4-substituted phenyl)tropane-2-carboxylic

acid methyl ester to the corresponding 3-(4-substituted phenyl)nortropane-2-carboxlic acid methyl esters and have shown that the 2β ,3 α -nortropane analogues, **4a**–**c**, possess the greatest selectivity for the NET. 3α -(4-Methylphenyl)nortropane-2 β -carboxylic acid methyl ester (**4c**) is the first 3-phenyltropane analogue to show high potency and selectivity at the NET relative to the DAT and 5-HTT.

Additional analogues are currently under investigation to exploit these trends further. The discovery of NET-selective compounds also completes a set of WIN 35,065-2 compounds selective for each transporter affected by cocaine.

Acknowledgements

The National Institute on Drug Abuse, Grant DA05477, supported this work.

References and Notes

- 1. Carroll, F. I.; Lewin, A. H.; Kuhar, M. J. In *Neurotransmitter Transporters: Structure, Function, and Regulation*; Reith, M. E. A., Ed.; Humana: Totowa, 1997; pp 263–295.
- 2. Kotian, P.; Abraham, P.; Lewin, A. H.; Mascarella, S. W.; Boja, J. W.; Kuhar, M. J.; Carroll, F. I. *J. Med. Chem.* **1995**, *38*, 3451.
- 3. Kotian, P.; Mascarella, S. W.; Abraham, P.; Lewin, A. H.; Boja, J. W.; Kuhar, M. J.; Carroll, F. I. *J. Med. Chem.* **1996**, *39*, 2753.
- 4. Blough, B. E.; Abraham, P.; Lewin, A. H.; Kuhar, M. J.; Boja, J. W.; Carroll, F. I. *J. Med. Chem.* **1996**, *39*, 4027.
- 5. Blough, B. E.; Abraham, P.; Mills, A. C.; Lewin, A. H.; Boja, J. W.; Scheffel, U.; Kuhar, M. J.; Carroll, F. I. *J. Med. Chem.* **1997**, *40*, 3861.
- 6. Holmquist, C. R.; Keverline-Frantz, K. I.; Abraham, P.; Boja, J. W.; Kuhar, M. J. K.; Carroll, F. I. *J. Med. Chem.* **1996**, *39*, 4139.
- 7. Boja, J. W.; Kuhar, M. J.; Kopajtic, T.; Yang, E.; Abraham, P.; Lewin, A. H.; Carroll, F. I. *J. Med. Chem.* **1994**, *37*, 1220.
- 8. Carroll, F. I.; Gao, Y.; Rahman, M. A.; Abraham, P.; Lewin, A. H.; Boja, J. W.; Kuhar, M. J. *J. Med. Chem.* **1991**, *34*, 2719.
- 9. Tejani-Butt, S. M.; Brunswick, D. J.; Frazer, A. Eur. J. Pharmacol. 1990, 191, 239.
- 10. Tejani-Butt, S. M. J. Pharmacol. Exp. Ther. 1992, 260, 427.